Identifying dynamical bottlenecks of stochastic transitions in biochemical networks.
نویسندگان
چکیده
In biochemical networks, identifying key proteins and protein-protein reactions that regulate fluctuation-driven transitions leading to pathological cellular function is an important challenge. Using large deviation theory, we develop a semianalytical method to determine how changes in protein expression and rate parameters of protein-protein reactions influence the rate of such transitions. Our formulas agree well with computationally costly direct simulations and are consistent with experiments. Our approach reveals qualitative features of key reactions that regulate stochastic transitions.
منابع مشابه
Quantifying stochastic effects in biochemical reaction networks using partitioned leaping.
"Leaping" methods show great promise for significantly accelerating stochastic simulations of complex biochemical reaction networks. However, few practical applications of leaping have appeared in the literature to date. Here, we address this issue using the "partitioned leaping algorithm" (PLA) [L. A. Harris and P. Clancy, J. Chem. Phys. 125, 144107 (2006)], a recently introduced multiscale le...
متن کاملEliminating fast reactions in stochastic simulations of biochemical networks: a bistable genetic switch.
In many stochastic simulations of biochemical reaction networks, it is desirable to "coarse grain" the reaction set, removing fast reactions while retaining the correct system dynamics. Various coarse-graining methods have been proposed, but it remains unclear which methods are reliable and which reactions can safely be eliminated. We address these issues for a model gene regulatory network tha...
متن کاملSynchronization analysis of complex dynamical networks with hybrid coupling with application to Chua’s circuit
Complex dynamic networks have been considered by researchers for their applications in modeling and analyzing many engineering issues. These networks are composed of interconnected nodes and exhibit complex behaviors that are resulted from interactions between these nodes. Synchronization, which is the concept of coordinated behavior between nodes, is the most interested behavior in these netwo...
متن کاملPredicting Critical Transitions in ENSO Models. Part I: Methodology and Simple Models with Memory
A new empirical approach is proposed for predicting critical transitions in the climate system based on a time series alone. This approach relies on nonlinear stochastic modeling of the system’s time-dependent evolution operator by the analysis of observed behavior. Empirical models that take the form of a discrete random dynamical system are constructed using artificial neural networks; these ...
متن کاملStochastic cellular automata model of neural networks.
We propose a stochastic dynamical model of noisy neural networks with complex architectures and discuss activation of neural networks by a stimulus, pacemakers, and spontaneous activity. This model has a complex phase diagram with self-organized active neural states, hybrid phase transitions, and a rich array of behaviors. We show that if spontaneous activity (noise) reaches a threshold level t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 108 5 شماره
صفحات -
تاریخ انتشار 2012